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Abstract
An approach to study cavitation in stretched liquids via molecular dynamics (MD) simulation is
presented. It is based on the stochastic properties of MD and allows one to study cavitation as a
stochastic phenomenon. The approach is used to study equation of state and stability limits of
the metastable liquid phase, cavitation kinetics and dynamics properties for different
temperatures. Particular examples of metals under consideration include Pb, Li and Pb83Li17.
Quantitative and qualitative disagreements between the classic nucleation theory estimates and
the MD results are found. The Kolmogorov–Johnson–Mehl–Avrami equation is used as an
alternative way to estimate cavitation rate. The two methods show good mutual agreement.
Decay at a constant stretching rate is also considered.

1. Introduction

The cavitation process consists of two main stages: bubble
formation and its subsequent collapse inside the metastable
liquid. The metastable liquid phase can exist as a stretched
or/and a superheated state. Both cases are equal from the
thermodynamic point of view. The traditional method for
describing the kinetics of cavitation is the classic nucleation
theory. It is based on thermodynamic calculations of the
work of new phase nucleus formation and on the solution of
the kinetic equation for the size distribution of nuclei [1–7].
The use of classic nucleation theory in practice, especially at
negative pressures, is often complicated. It happens due to
the uncertainty in the actual accuracy of model concepts taken
into consideration and the absence of both reliable data on the
surface tension at the interphase boundary and the equation of
state of metastable liquids. The use of the classic nucleation
theory is also limited by the closeness of the thermodynamic
state to the phase stability limits (spinodal) [3–7].

Using the molecular dynamics (MD) method allows
one to study cavitation on the microscopic level, based
only on interatomic interaction potentials without additional
assumptions on the mechanisms of cavity formation and

growth. For instance, the appearance and growth of a
localized vapor nucleus was clearly seen and the kinetic
stability limit of liquid was estimated in a system of 10 976
particles in [8]. A method for calculating the frequency of
homogeneous nucleation in a metastable phase simulated by
the MD method was suggested in [9–11] for the nucleation in
a superheated crystal. This method was based on averaging
the metastable phase lifetime over an ensemble of independent
molecular dynamics trajectories. A similar approach was
used to calculate the cavitation rate in a Lennard-Jones
liquid in [12, 13], where the influence of the cutoff radius
of interparticle interaction potentials was analyzed. The
cavitation dynamics and kinetics for an embedded-atom model
(EAM) of liquid lead under negative pressures in a wide range
of temperatures were studied in [14–16]. In [17] the Lennard-
Jones MD model was used to investigate a collapse process of a
single gas bubble in the liquid—the second stage of cavitation,
which is an elementary process relevant to sonoluminescence.
As the bubble shrinks after a uniform compression of the
system, a sharp temperature rise and a significant heat and mass
transfer on the surface were observed.

Cavitation has a very harmful effect. For example,
when a propeller blade is rotating through the water the
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latter becomes stretched and cavities grow; this is the most
common implementation of a cavitation process; when voids
collapse the resulting pulses can cause propeller material
destruction. There are many of examples of this kind.
Though there are some cases in which cavitation is useful and
desirable [18, 19], it would be a great achievement to avoid
cavity formation in most areas of industry. The same kind of
undesirable processes could possibly influence the work of a
new type of energetic reactors with fast deuterium–tritium fuel
ignition (FIHIF—fast ignition heavy ion fusion) [20–22]. The
performance of systems of this type is substantially influenced
by continuity loss (cavitation) in the coolants caused by the
relaxation of stresses that arise as a result of micro-explosions
in the working chamber (e.g. see [23, 24]). In order to
simulate system functioning, we have to use the data on the
kinetics of cavitation in the heat-transfer material under tensile
stresses [25]. Liquid Pb, Li and Pb83Li17 were selected as
the objects of study because they are the basic components of
promising coolants in FIHIF reactors.

In this work we are presenting an approach to study
cavitation in stretched liquid via MD simulation. It is shown
that cavitation is a stochastic phenomenon, so the lifetime of
a stretched liquid is a random value and the decay of the
liquid is a Poisson process. The approach presented consists
of three main stages: (a) modeling of the ensemble of initial
states which are different from each other microscopically but
equivalent to each other from the macroscopic point of view;
(b) simulation of the ensemble of MD runs in order to study
spontaneous decay, to obtain an equation of state with spinodal
included, lifetime distribution, average lifetime and cavitation
rate J ; (c) analysis of pressure and temperature dependence
of J , elucidation of stability criteria and comparison with
different variants of classic nucleation theory. Examples
are given for the melts of lead, lithium and Pb83Li17 using
the EAM potentials. Various MD diagnostics are applied.
Qualitative and quantitative disagreements with the classic
theory of homogeneous nucleation are found. The cases
of cavitation at both static negative pressures and stationary
stretching rates are treated.

2. MD method theory and model used

2.1. Model and method of calculations

Interatomic interactions are described by a many-particle po-
tential for Pb, Li from the set of EAM type potentials [26, 27]
suggested in [28, 29]. These potentials fit better for model-
ing metals than common pair potentials (Lennard-Jones type,
for example) since they explicitly take into account the effec-
tive electron density function. Addition of the many-body ef-
fects to the classical pair potential brings the computed mate-
rial properties (such as temperature dependence of free energy,
melting point, thermal expansion coefficients, Gruneisen pa-
rameters, elastic constants and defect properties) to within the
range of their experimental values for many metals [30]. It is
well known that the vacancy formation energy calculated from
a pair potential is significantly higher than those obtained from
experiment even for a rare-gas solid. Addition of the many-
body interactions reduces this energy to be more in agreement

with experimental values. This fact is especially important for
the case of cavitation at the initial stage of bubble formation
since the bubble initially is formed as a ‘vacancy’ in liquid.
The work of the critical bubble formation is the most impor-
tant factor determining all the kinetic properties of cavitation.
Because of the inclusion of the many-particle contribution, it
can be expected that the EAM potentials describe the behavior
of particles on an open surface, and therefore all phenomena re-
lated to liquid–gas phase transitions, better than pair potentials.
Thus, we can see the importance of introducing many-body in-
teractions. Potential energy in our model can be represented by
the sum of two terms:

U =
∑

i< j

φ(ri j ) +
∑

i

F(ρ̄i ). (1)

The first term corresponds to pair interactions: φ is the pair
interaction potential. The second term describes many-particle
interactions; the embedding function F in it depends on the
effective electron density on atoms ρ. The latter is in turn a
function of the distance ri j between i and j atoms:

ρ̄i =
∑

j �=i

ρ(ri j ). (2)

The effective electron density in this form properly describes
the electronic interaction induced part of the potential
energy for the spherically symmetric electronic configuration
possessing atom types. It happens because this function
depends only on the interatomic distance. Thus, the total
potential energy of the particular atom is a sum over the
neighbor list (the atoms within a cutoff sphere; the cutoff radii
values are taken from the original articles [28, 29]) of pair
interaction energies between atoms plus the value of a function
F applied to effective electron density on the atom. It is also
induced by all the atoms within the same cutoff sphere and it is
calculated by a summation over the neighbor list.

The lead potential parameters were adjusted in [28]
using the condition of correspondence to the properties of
the crystalline phase (its binding energy, surface energy,
elastic constants, phonon frequencies, thermal expansion, and
temperature of fusion). This potential was successfully used
to study surface and cluster fusion and crystallization and
vaporization of nanoclusters [31]. It was, for instance, shown
that the temperatures of fusion (618 ± 4 K) and vaporization
(∼2050 K) of molecular dynamics models based on this
potential were in close agreement with the experimental values
for lead (600.7 and 2033 K, respectively). In [29], the authors
have constructed the potential for Li from first-principles
calculations. The potential was shown to be very good at
describing the structural properties of bulk metals and clusters
in the size range 8 < N < 310. The lattice constant, melting
temperature, vibration modes, bulk modulus, and Gruneisen
constant are in agreement with available experimental values.

The molecular dynamics method consists of numerical
integration of the equations of motion of the many-particle
system according to the previously specified interaction
potential between them. The equations of motion in our case
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represent the classical Newtonian equations:

mi
d �Vi(t)

dt
= �Fi [r(t)] �Vi (t) = d�ri (t)

dt

�Fi [r(t)] = ∂U

∂�ri

(3)

where ri is the i th particle vector coordinate and U is the
potential energy of the system. Constant temperatures were
set and maintained using the thermal stabilization scheme
(thermostat). Additional Langevin terms were introduced into
the equations of motion, namely, self-consistent white noise
and friction [32, 33], whose total influence was small compared
with that of interatomic interaction forces.

In this work, we consider systems with 13 500–500 000
atoms in the basic cube. Three-dimensional periodic boundary
conditions are used. The trajectories of atomic motions
are calculated by the numerical integration of the system of
classical equations of motion using the difference scheme of
the second order of accuracy with a 1.43 fs time step. The
instantaneous temperature (T ) and pressure (P) averaged over
the cell volume are calculated as

T = 2m

3kB N

N∑

i=1

v2
i

2
, P = 1

V

(
NkBT + 1

2

∑

i

�Fi �ri

)
,

(4)
where kB is the Boltzmann constant, m is the mass of the atom,
V is the calculation cell volume, and Fi is the force acting on
particle i .

2.2. Stochastic properties of EAM model

The dynamic system of many particles possesses stochastic
properties [34, 35]. It can be revealed as a cause of exponential
divergence of MD calculation trajectories. In the course
of time, the system under consideration could no longer be
described by the analytical solution of the initial system of
equations of motion (e.g., if we calculate a trajectory using
both analytical solution and the MD finite-difference approach,
we will see an exponential divergence). In this case we have
to use the concepts of dynamical memory time and Krylov–
Kolmogorov entropy. Here it is necessary to emphasize that
an exponential trajectory divergence is a feature of the many-
particle system itself (N-equation Cauchy problem feature),
not only of the MD model. In MD calculations numerical
errors just initiate the divergence process.

The dynamical memory time can be specified from the
following procedure. First it is necessary to calculate the
coordinate or the velocity divergences:

〈�r(t)2〉 = 1

N

∑

i=1...N

(ri (t) − r ′
i (t))

2

〈�υ(t)2〉 = 1

N

∑

i=1...N

(υi (t) − υ ′
i(t))

2
(5)

where (υ, r ) and (υ ′, r ′) are the coordinate and the velocity
on the first and on the second trajectory, respectively. For
the numerical solutions of the N-equation Cauchy problem we
have then

〈�r(t)2〉 = A exp(K t) 〈�υ(t)2〉 = B exp(K t) (6)

Figure 1. The coordinate (lower) and the velocity (upper) divergence
time evolution in MD calculation for the values of timesteps
�t = 0.005 and �t ′ = 0.0025 ps. It is seen that the correlation is
lost at approximately 7 ps when the system meets the condition
〈�υ2〉 = 2〈υ2〉T . In the inset there is a dependence of time of
divergence on the timestep ratio (timesteps used: �t = 0.005;
�t ′ = 0.0025, 0.001 25, 0.000 625 ps).

where A and B are the constants that depend on the initial
perturbation values and K is the maximum averaged Lyapunov
entropy. As a consequence of the above described instability,
MD trajectories calculated from the same initial configuration
with different integration timesteps �t and �t ′ diverge
exponentially fast (see figure 1). The finite difference character
of integration results in the fact that resulting trajectories do not
coincide right after the first timestep of calculation. In a certain
period of time the divergence changes its exponential character
and goes to saturation at t ′

m. After this moment two trajectories
are completely uncorrelated as if their initial configurations
were not the same. The limiting value tm = lim �t→0

�t ′−fixed
t ′
m is

called dynamical memory time. In the EAM model used in
this work the value of dynamical memory time is estimated
and is approximately equal to 7 ps (see figure 1). Such a small
value of dynamical memory time means that one could obtain
two statistically completely independent trajectories from one
initial condition using two different integration steps after
about 7 ps of calculation.

The given property of molecular-dynamical systems
allows us to apply MD to modeling processes of formation of a
new phase in view of metastability. When the average lifetime
of a metastable phase is greater than the dynamical memory
time, the lifetime distribution is subject to Poisson statistics as
the calculations show.

3. Homogeneous nucleation

3.1. Simulation of the ensemble of the MD runs

Instead of the above described method of obtaining statistically
independent configurations, in this work we use another
approach to generate the initial states (see [10] for some
discussion). The initial configuration of atoms corresponding
to the liquid phase is generated as follows. First, a
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Figure 2. Typical pressure on time dependences in MD calculations (timestep = 5 fs). (a) Macroscopically different initial states 1 and 2
produce systems with different pressures inside, P1 and P2, and different lifetimes, τ1 and τ2. Case 3 in which the system does not have any
distinguishable value of lifetime is also shown. (b) Microscopically different initial states (having different implementations of Maxwellian
atomic velocity distribution for the same temperature) have different values of lifetime τ1–τ4 for the same value of pressure.

configuration which is a face centered cubic (FCC) lattice of
atoms with the required density ρ = m N/V and velocities
randomly selected according to the Maxwell distribution
corresponding to temperature T is constructed. Liquid
metastable states at density and temperature values that
excluded the possibility of solid phase existence are studied.
For this reason, the lattice then undergoes fusion in several
dozen femtoseconds during molecular dynamics trajectory
calculations, and the system becomes a liquid with the
given temperature T , which is then maintained by the
thermostat for several picoseconds. The final configuration
of preliminary molecular dynamics calculations is the sought
initial configuration. We use different implementations of
initial Maxwellian velocity distributions corresponding to the
same temperature and density to produce an ensemble of
independent initial configurations corresponding to the liquid
at the given ρ and T .

In figure 2 the particular dependences of pressure on time
in an MD simulation of cavitation in stretched liquids are
shown. The horizontal part corresponds to the metastable
liquid state. Then the pressure jumps upward and this moment
corresponds to the cavity formation. There are two values we
obtain from this calculation: the value of pressure inside the
metastable stretched liquid and the value of its lifetime. If we
start varying the volume of the system (or the level of stretching
in other words), we will see that the corresponding pressure in
it and its lifetime are also changing. The way in which pressure
is changing specifies the equation of state. By averaging the
value of lifetime over the ensemble of initial configurations it
is possible to calculate kinetic properties of cavitation. Both
these cases are described below.

3.2. Equation of state at negative pressures

We considered cavitation in the liquid at large negative
pressures corresponding to states close to the stability limits
(spinodal). Experimental data on liquid metal spinodal
under negative pressures (including Pb and Li) are currently

unavailable. General liquid phase diagram characteristics in
the region of negative pressures at low temperatures (0 < T <

0.5TC) have also been poorly studied (e.g., see [36]).
Equation of state calculations for the molecular dynamics

model under consideration are performed by calculating
the P–ρ dependence along isotherms and determining the
(dP/dρ)T = 0 point by extrapolation (see figures 3(b)
and 4(b)). Molecular dynamics trajectories 50–200 ps long
are calculated for all densities studied at a fixed temperature.
The average lifetime of metastable liquids τ decreases as
the density lowers, and cavitation can occur during the
computation period. Isotherms are constructed by averaging
pressure P over the molecular dynamics trajectory portion
up to the beginning of the phase transition (0 < t < τ).
Because the selection of the extrapolation function is uncertain
(we used polynomials of degrees n = 2–4), spinodal points
are determined with a certain ambiguity, to within ∼7% for
P and ∼3% for ρ. Figure 3 shows that the stability loss in
calculations at lower temperatures occurs before (dP/dρ)T

becomes equal to zero. The stability loss and (dP/dρ)T = 0
points approach each other as the temperature increases.

The position of the spinodals of liquid lead and lithium
can be preliminarily estimated on the basis of MD calculations
of the spinodal of the Lennard-Jones fluid [11, 37] using
the concept of thermodynamic similarity with respect to the
critical point parameters (figures 3(a) and 4(a)). We performed
preliminary estimates of negative pressures corresponding
to strongly stretched metastable melts in the temperature
range studied. Calculated values are somewhat larger than
those obtained in preliminary spinodal estimates by similarity
relations (comparison should take into account possible errors
in the experimental critical point parameters). The closeness
of the calculation results and preliminary spinodal estimates
to each other may be considered as the evidence of the
universal similarity of the spinodals of simple liquids at
low temperatures. This question was deliberately considered
in [11, 38]. Note in addition that, as distinct from the results for
a Lennard-Jones system [37, 39], the Pb and Li melt spinodals
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Figure 3. P–T –ρ diagram of lead. Common to (a) and (b): 5 labels the points at which (dP/dρ)T = 0 for the approximation of lead
isotherms by polynomials (see figure 1(b)), 6 corresponds to the points at 700, 1000 and 2000 K at which the cavitation rate is 5 × 1027, 1028,
1029, 3 × 1029 and 1030 cm−3 s−1 (the closer the point is to the spinodal the higher is the corresponding cavitation rate), and curves 7 show
estimated points at which the cavitation rate has the above specified values in the temperature range 700–2700 K. (a) (1) Experimental melting
curve and its extrapolation to negative pressures by the Simon equation P/P∗ = (T/Tm)C –1 (P∗ = 5.11 GPa, Tm = 600 K, and c = 1.65),
(2) vaporization curve and (3) liquid lead spinodal estimated by the renormalization of the Lennard-Jones system spinodal with the use of
critical point parameters (TC = 5400 K and PC = 0.175 GPa [40]); the hatched region corresponds to the supposed coolant working
parameters in FIHIF reactors [20, 21]. (b) Isotherms of liquid lead over the temperature range 700–2700 K drawn in steps of 100 K; points 4
obtained in molecular dynamics calculations are linked by solid lines for clarity (also see [14, 15]).

Figure 4. P–T –ρ diagram of lithium. Common to (a) and (b): 5 labels the points at which (dP/dρ)T = 0 for the approximation of lithium
isotherms by polynomials (see figure 1(b)), points 6 correspond to the experimental data for the liquid lithium spinodal [55] and 7 is the Furth
equation PSp = PVap − Cσ 3/2(kT )−1/2 based approximation of experimental points 6, where C is used as a variable. (a) (1) The experimental
melting curve and its extrapolation to negative pressures by the Simon equation P/P∗ = (T/Tm)C − 1 (P∗ = 1.37 GPa, Tm = 453 K and
c = 10.13), (2) the vaporization curve and (3) the liquid lithium spinodal estimated by the renormalization of the Lennard-Jones system
spinodal with the use of critical point parameters (TC = 3223 K and PC = 0.068 GPa [42]). (b) Isotherms of liquid lithium over the
temperature range 300–2000 K drawn in steps of 100 K; points 4 obtained in molecular dynamics calculations are linked by solid lines for
clarity.

do not intersect the continuation of the line of lead melting

into the region of negative pressures according to the Simon

equation, which may be evidence that the crystal and the liquid

can be at equilibrium over a wide range of metastable states.

3.3. Kinetic properties of cavitation

The lifetime of a uniform metastable liquid phase along one
molecular dynamics trajectory changes in the case of varying
of the initial configuration and distribution of particle velocities
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Figure 5. The dependences of cavitation rate on pressure for different melts. MD results are shown by filled circles for the three different
values of temperatures using different colors; approaches (8) and (9) are shown by dashed and dot-dashed lines respectively and are colored in
the same way. MD results are given with errors due to the error in average lifetime determination. (a) Lead for temperatures 700, 1000 and
2000 K; approaches (8) and (9) are given with errors (arrows) corresponding to the error in experimental value of surface tension [43]. (b)
Lithium for temperatures 700, 1000 and 1300 K. (c) Pb83Li17 eutectics for temperatures 700, 1000 and 1300 K. Surface tension data for Li and
Pb83Li17 are taken from [44].

and, initial conditions being equal, integration step [10, 13, 32].
Statistical averaging for the given thermodynamic state (ρ,
T , P) is performed over an ensemble of M independent
initial configurations, each characterized by the corresponding
lifetime τi (i = 1, . . . , M). According to the model that
treats homogeneous nucleation as a random Poisson process,
the distribution of lifetimes τi over the ensemble of initial
configurations is

m(τ ) = M · �τ

τ̄
exp

(
−τ

τ̄

)
, τ̄ = 1

M

M∑

i=1

τi (7)

where m(τ ) is the number of trajectories from the ensemble
of M trajectories along which cavitation occurs during the
(τ, τ + �τ ) time interval. Examples of distributions obtained
in our calculations are shown in figure 6(b). We see
that model (7) describes fairly well the cavitation process
under consideration. To obtain of distributions with a well
defined exponential form requires the accumulation of the
large statistics (M > 100–200). The root-mean-square error
determined from M measurements is στ̄ = τ̄ /

√
M for the

exponential distribution law. The rate of a spontaneous phase
transition is usually characterized by the mean number of

critical nuclei formed in unit volume per unit time, that is,
by the cavitation rate J . The cavitation rate is calculated as
J = 1/(τ̄V ). The results are shown in figure 5.

3.4. Concept of spinodal. Elucidation of stability criteria

The above used concepts of spinodal and stability limit need
to be considered more deliberately as long as the lifetime of
metastable liquid system depends on the system size. It is
natural that in a system of a bigger scale a fluctuation of a
certain size occurs more easily than in a smaller one. Though
the cavitation rate is supposed not to depend on the system
volume (as it is normalized by V by definition), there are
some questions even in this case: if we calculate the J–P
dependence for a certain temperature in the system of volume
V1 and want to obtain a lifetime τ2 at pressure of the same order
of a system of volume V2 = 1000V1, the time we obtain will
be 1000 times shorter than the time τ1 for V1. Nothing much it
could seem, but since τ1 is measured in picoseconds in MD τ2

would have an extremely small value that is not going to come
into being at all.

What we could conclude is the fact that the stability limit
itself needs to be talked about only with respect to the size of

6
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Figure 6. Demonstration of the self-consistency of MD results for
two approaches and different numbers of particles in the calculation
box. On the main plot is given the dependence of cavitation rate on
pressure for T = 1000 K: the point obtained from the KJMA (10)
approach (star), points obtained from the approach based on
distributions for the 13 500 atom system (solid circles) and the
500 000 atom system (triangle). An exponential fit (straight line) of
MD data is also given. The insets explain the approaches. Upper
inset (a) KJMA based cavitation rate estimation approach: the
dependence of instantaneous void volume to final void volume ratio
on time (timestep = 1.43 fs). MD points are fitted using the KJMA
equation: curve 1 for n = 3; curve 2 for n = 4. The last fit provided
the cavitation rate value data point shown by the star on the main
plot. Lower inset (b) Distribution based cavitation rate estimation
approach: number of molecular dynamics trajectories m (τ ) from the
ensemble of M independent trajectories for which the moment of the
beginning of cavitation (lifetime τi ) lies in the interval
(τ, τ + �τ ; �τ = 15 ps). Calculation results for various pressure p
values at T = 700 K are shown: (1) P = −3.95 GPa, M = 46; (2)
p = −3.91 GPa, M = 232; (3) p = −3.89 GPa, M = 142. For
comparison, the dependences obtained for the model according to
which cavitation is a random Poisson process (7) are shown by
straight lines (planes). The average lifetime for each
distribution/ensemble gives the cavitation rate value.

the system under consideration. In the model calculation we
can come very close to the thermodynamic stability limit (or
spinodal) determined by the (dP/dρ)T = 0 point, but this
condition still is not satisfied. The bigger the size and the
number of particles in the calculation cell, the lower the value
for the maximal negative pressure it is possible to access in
simulation. What is to be noted also is the fact that if even for
our model calculations the (dP/dρ)T = 0 point is commonly
unreachable, it will not ever be reached in practice seemingly.

3.5. Analysis of pressure and temperature dependence of J

It is interesting to compare the calculation results with
the classic nucleation theory predictions. The temperature
dependence of the rate of nucleation determined according to
Doering–Volmer (see [3, 41]) is

J = ρ

m

√
2σ

πm
exp

(
− W

kBT

)
, W = 16πσ 3

3(P − P ′)2
(8)

where σ is the surface tension along the vaporization line at
the temperature T , W is the work of critical nucleus formation

and P ′ is the vapor pressure inside the critical nucleus.
Approximation (8) is selected because of the simplicity of the
pre-exponential factor, which only contains σ of all the special
metastable liquid parameters. The simplified Doering–Volmer
approach is

J = B exp

(
− W

kBT

)
, W = 16πσ 3

3(P − P ′)2
. (9)

Here B stands for a constant that could be estimated as
B ∼ 1010 s−1. We compare (8) and (9) with the results of
molecular dynamics calculations on the assumption that the
pressure in the system containing a critical nucleus is equal to
the mean pressure along the metastable region (0 < t < τ)

and the vapor pressure in the critical bubble is negligibly
low, P ′ � P . The latter assumption is used because the
density of vapor at low temperatures (T < 0.5TC) is low
and critical bubbles were virtually empty. Bubble growth
corresponds to the transfer of holes (vacancies) from the liquid
rather than the transfer of molecules into the vapor phase. We
used the experimental data on the surface tension of melts
along the vaporization line [43, 44]. The surface tension σ

strongly influences the work of critical nucleus formation and,
therefore, the temperature and pressure dependences of the
nucleation rate. For this reason, the spread of experimental
data is included in the form of the confidence interval σmin <

σ < σmax heuristically constructed on the basis of the
uncertainty of the linear approximation of experimental data
in the region of high temperatures [14, 15]. Equations (8)
and (9) were therefore used to obtain the {J (P; σ), σmin <

σ < σmax} regions that correspond to the classic nucleation
theory approach data.

It follows from figure 5 that the classic nucleation
theory results are not in quantitative agreement with MD
results and do not even qualitatively reproduce them correctly.
Actually, there is no general way in which approaches (8)
and (9) differ from MD results. The discrepancy between
theory and calculation results cannot be completely eliminated
by including the dependence of surface tension on surface
curvature (e.g., see [3, 45, 46]). It follows from the
existence of both lower and upper positions of the two
approaches (8) and (9) with respect to MD data. The
calculation results may be considered as evidence of the fact
that the surface tension of bubbles of critical size is larger
than its value for a plane interface or the work of critical
nucleus formation is underestimated for Pb (see figure 5(a))
and overestimated for Li and Pb83Li17 (see figures 5(b)
and (c)). Note that the consistent comparison of molecular
dynamics simulation results and various classic nucleation
theory approximations should involve the determination of the
temperature dependence of surface tension along the liquid–
vapor equilibrium line performed using the same molecular
dynamics model. One of the possible reasons why the
classic nucleation theory approximations are not in acceptable
agreement with the calculation results is the critical nucleus
size estimated according to the theory (for Pb melt). It is
Nn = (ρ/m)(4π/3)(2σ/|P|)3 ≈ 1 atom (ρ/m = 2.82 ×
1028 m−3, T = 700 K, σ = 0.431 N m−1, P = −3.89 GPa),
which is, generally, outside the applicability range of the
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macroscopic classic nucleation theory approach in the region
under consideration.

The homogeneous nucleation rate exponentially decreases
far from the stability limits of the metastable liquid because
of the high activation barrier of spontaneous fluctuation
cavity formation. Cavitation in the coolant in the practically
important region of power plant functioning parameters could
probably occur by the heterogeneous mechanism of nucleation
on impurities and inhomogeneities (such as, for instance,
lithium atom clusters in the Pb83Li17 eutectic [20, 21]). MD
heterogeneous cavitation rate calculations can be performed
using a correct model of interactions with impurity atoms.

3.6. Self-consistency of the results for different volumes.
Multi-bubbling

Since the discussed method of calculations can be used at
various numbers of particles, the question arises of the extent
to which the results depend on the size of the calculation
cell. We obtained the dependences of the pressure and
the temperature in the metastable liquid on the number of
particles at the computationally reachable values (from 500
to 500 000 particles in the cell). It is found that the size
of the system substantially influences the fluctuations of the
parameters with respect to their mean values rather than the
mean values themselves. This fact is in accordance with
theoretical predictions. The cavitation rate is independent of
volume because the number of critical nuclei increases as the
volume grows.

There is, actually, another way to estimate the value
of cavitation rate from only one calculation of a large-scale
system. It is based on the Kolmogorov–Johnson–Mehl–
Avrami (KJMA) equation describing the time dependence of
the fraction transformed during the phase transition [47–49]:

f = 1 − exp
(−ktn

)
. (10)

For spontaneous nucleation n = 4 and k = Jυ3π/3, for site-
saturated nucleation n = 3 and k = 4Nυ3π/3, where J
is the nucleation rate, N is the initial site concentration and
υ is the new phase cluster (e.g. bubble, drop) growth rate.
Using this equation and having the MD trajectory for a large-
scale system of about 1 million atoms where there are enough
bubbles (about 50–100), it is possible to make estimations of
the cavitation rate from only one calculation. The MD results
compared with the Kolmogorov–Avrami equation are shown in
figure 6(a). It is seen from the figure that in the initial stage MD
results are better fitted with the approach (10) with n = 4, and
in the final stage MD results correspond to (10) with n = 3.
This seems natural because initially there were no nucleation
sites; they appeared in the course of time.

KJMA equation based cavitation rate estimation shows
approximately the same value as for the method of simulation
of the ensemble of the MD runs for smaller number of particles
(figure 6). The number of atoms does not affect the dependence
of cavitation rate on pressure: in figure 6 are shown the
results for the distribution based approach for 13 500 atom and
500 000 atom containing systems that are lying on a straight
line exactly. The case of multi-bubbling and the dynamics of
the decay were also considered in [15].

3.7. Cavitation in Pb–Li

When we have two different types of atoms in the simulation
the potential energy calculation is not different at all except that
the summation over atom type is included. The formula for the
potential energy of a particle is

Ui =
∑

i< j

φαβ(ri j) + Fα

(
∑

i �= j

ρα(ri j )

)
(11)

where F is the embedding energy, which is a function of the
atomic electron density ρ, φ is a pair potential interaction, and
α and β are the element types of atoms i and j respectively.
The multi-body nature of the EAM potential is a result of the
embedding energy term. Both summations in the formula are
over all neighbors j of atom i within the cutoff distance. Let
us consider a Pb atom, for example, that is, α = Pb. Effective
electron density on it is induced by both Li and Pb type atoms
within a cutoff sphere: ρα = ρPb in the sum in the brackets. As
the embedding function we take the one for Pb: Fα = FPb. Pair
interactions are calculated absolutely the same way as for the
single-atom type case. The only unknown parameter here is the
cross-Pb–Li pair interaction function: φαβ = φPb if β = Pb;
φαβ = φPbLi if β = Li.

We use single-atom potentials for Pb and Li to construct
a cross-Pb–Li interaction potential. Based on the approach
from [50] we modified functions from (11):

ρ(R) → Cρ(R) F(ρ) → F(ρ/C). (12)

This transformation does not change the Hamiltonian itself but
provides us with an opportunity to vary the cross-Pb–Li pair
interaction function by changing constants C for each atom
type:

φPbLi(r) = 1

2

(
ρPb

ρLi
φLi(r) + ρLi

ρPb
φPb(r)

)
. (13)

Thus, having chosen particular constants for each metal, we
can calculate the pair correlation function g(r) from MD and
then according to the formula

a(K ) = 1 + n0

∫ ∞

0

[
g(r) − 1

] sin(Kr)

Kr
r 2 dr (14)

we can calculate static structure factor a(K ) as a functional
depending on CLi and CPb. Finally, having experimental data
on a(K ) from [51] we can calculate mean square deviation.
Such an algorithm was applied to the constant interval of {0.1–
10} and it was shown that the best correspondence is reached
at the values of constants CLi = 0.7, CPb = 0.9.

The results on the dependence of cavitation rate on
pressure for Pb83Li17 (see figure 5(c)) were obtained using the
cross-Pb–Li interaction potential described above. Compared
with the results for pure Pb and Li, the results for Pb83Li17

tell us that there is probably the same mechanism of bubble
formation in a two-component system as for a one-component
system under the conditions studied. This can be assumed from
the same steepness of the J–p curve for PbLi as for the pure
metals.

Having obtained the cross potential for Pb–Li interactions
we started the study of the heterogeneous cavitation on

8
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Figure 7. Comparison of spall strength PS according to the Grady criterion [52] with MD and experimental data: (a) MD data on PS for Pb
(squares) compared with (15); (b) experimental data from [53, 54] on PS for hexane (circles) and ethanol (triangles) compared with
approach (15)—lines 1, ethanol; 2, hexane; 3, estimation of PS results for both substances by renormalizing of MD calculation of
Lennard-Jones system, critical point parameters being known [11, 39].

impurities. The bubble formation in this case occurs on
the interface between two atomic types. Impurities are
formed by lithium atom clusters inside the media of lead
atoms. Preliminary results showed a strong dependence of
the maximum reachable value of negative pressure on the
heterogeneity. Thus, while Pmax for Pb is in the interval of
4.5–5.0 GPa, for a Pb–Li heterogeneous system this value is
about 2–2.5 GPa according to our preliminary calculations.

4. Spallation criteria

While calculating the equation of state for liquid metals we
obtained some data on the adiabatic expansion of metals
under consideration, especially on the spall strength. Here
it seems reasonable to consider the spallation results of our
MD in comparison with hydrodynamical spallation criterion
of Grady [52]. According to this criterion, the spall strength of
matter could be estimated using several of its properties:

PS = (6ρ2c3σ ε̇)1/3 (15)

where ρ stands for density, c is the sound velocity, σ is
the surface tension and ε̇ = 1

V
dV
dt is the expansion rate.

Both MD calculations (for Pb) and experimental results (for
ethanol, hexane and water from [53, 54]) have only qualitative
agreement compared with this criterion. The value of PS

produced by (15) is significantly smaller than it appears to be
in MD simulation (see figure 7). Experimental parameters of
Pb are taken from [43].

5. Conclusions

An approach has been developed for MD modeling and
simulation of cavitation in metastable liquids. It includes the
following:

• calculation of the equation of state at negative pressures;
• treatment of homogeneous cavitation rate;
• elucidation of the concept of the limit of stability

(spinodal).

The examples for liquid metal EAM models of Pb, Li and
Pb83Li17 have been given:

• the self-consistency of MD results for small and large
systems is shown and both approaches (single-bubble
and multi-bubble cavitation) provide the same data on
cavitation kinetics,

• the theoretical approaches based on classical nucleation
theory fail to describe MD results,

• the cross-Pb–Li interaction potential is constructed and
• it is shown that most probably cavitation in Pb83Li17 has

the same origin as for Pb and Li.

The importance of study of cavitation as a stochastic
phenomenon has been shown. The approach uses stochastic
features of the MD method in explicit form and is based
on a physically proven choice of the ensemble of initial
nonequilibrium states for averaging the relaxation MD
runs [56].

Cavitation in metastable melts at both negative pressures
and stationary stretching rates is treated. The examples
of Grady spallation criteria failing to describe MD and
experimental data are shown. Stability limits for liquid Pb,
Li and Pb83Li17 are estimated in a wide range of pressures
and temperatures significantly lower than critical temperatures
(T < 0.5T c). Elucidation of stability criteria is proposed.
Cavitation kinetics and dynamics are studied for different
temperatures. It is shown that theoretical approaches based on
the classical theory of nucleation and the MD results provide
different estimations of cavitation rate.

It is shown that using the KJMA equation for the bubble
growth kinetics it is possible to estimate the value of cavitation
rate from only one calculation of a rather large (million-atomic)
‘multi-bubbling’ system. This estimate appears to be of the
same order as for the above described method of simulation of
the MD run ensemble for smaller systems or the distribution
based method. In fact, the latter approach provides a more
accurate value of cavitation rate. Thus it can be concluded
that in the case of homogeneous cavitation it is crucial to
calculate a large-scale system only to study states of matter
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rather far from stability limit. Since cavitation rate is defined
as J = 1/(τ̄V ), the bigger the system volume for the same
value of lifetime/calculation time the lower is the cavitation
rate value and respectively the farther we go from the stability
limit.

The approach has a universal nucleation character. It is
applied as well to the following:

• nucleation in solids at both constant superheating and
stationary superheating rate [10];

• cavitation in single crystals and nanocrystals at both neg-
ative pressures and stationary stretching rates [11, 57, 56].

The approach can be applied to solidification and vitrification
too.

The examples of challenging problems that can be
considered using the described method include the following:

• heterogeneous nucleation and cavitation (a physically
proven choice of the ensemble of initial nonequilibrium
states is not clear);

• extension of the approach outside temporal and space
scales accessible for the MD method;

• second stage of cavitation (bubble collapse) study
and incorporation of MD results in continuum media
mechanics.
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